
Plan Space Analysis: An Early Warning System to Detect
Plan Regressions in Cost-based Optimizers

Florian M. Waas
EMC2 Corp.

florian.waas@emc.com

Leo Giakoumakis
Microsoft Corp.

leogia@microsoft.com

Shin Zhang
Microsoft Corp.

shin.zhang@microsoft.com

ABSTRACT
Plan regressions pose a significant problem in commercial
database systems: Seemingly innocuous changes to a query
optimizer component such as the cost model or the search
strategy in order to enhance optimization results may re-
sult in unexpected and detrimental changes to previously
satisfactory query plans.

Database vendors spend substantial resources on quality
assurance to guard against this very issue, yet, testing for
plan regressions in optimizers has proven hard and incon-
clusive. This is due to the nature of the problem: the opti-
mizer chooses a single plan—Best Plan Found (bpf)—from
a search space of literally up to hundreds of millions of differ-
ent plan alternatives. It is standard practice to use a known
good bpf and test for changes to this plan, i.e., ensure that
no changes have occurred. However, in the vast majority
of cases the bpf is not be affected by a code-level change,
even though the change is known to affect many plans in
the search space.

In this paper, we propose a holistic approach to address
this issue. Instead of focusing on test suites consisting of
bpfs we take the entire search space into account. We in-
troduce a metric to assess the optimizer’s accuracy across
the entire search space.

We present preliminary results using a commercial data-
base system, demonstrate the usefulness of our methodology
with a standard benchmark, and illustrate how to build such
an early warning system.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing

General Terms
Experimentation, Measurements, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest ’11 June 13, 2011, Athens, Greece
Copyright 2011 ACM 978-1-4503-0655-3/11/06 ...$5.00.

1. INTRODUCTION
Query optimization is at the heart of a relational database

system. The optimizer compiles a declarative query descrip-
tion, e.g., SQL, XQuery, MapReduce, etc. into an executable
query plan. A query plan is the result of a non-trivial pro-
cess that takes into account a large number of factors, such
as the anticipated cost of a plan fragment, and arrives at a
decision which plan most likely offers the best performance1.
This plan is called the best plan found, short bpf. The bpf
is not necessarily the optimal plan. Rather, the bpf is a
compromise of modeling the anticipated execution at a level
as detailed as possible, yet, spending no more resources and
time on the problem as is deemed necessary. The bpf is
chosen based on an model that approximates the actual ex-
ecution environment.

1.1 Plan Regressions
Plan regressions are changes in query plans that lead to

inferior performance.
Plan regression may occur in many different situations.

The two most common ones are:

• Code-level changes to the optimizer trigger a bad plan
choice, e.g., attempts to improve the search strategy,
more accurate cardinality estimation, more sophisti-
cated cost model, or the mere correction of software
defects;

• Changes to the optimizer’s input parameters trigger
a bad plan choice, e.g., minor changes to the logical
or physical design of the database; changes to the un-
derlying data through additional data loads, or simply
recomputed statistics;

The effect of plan regressions can be frustrating for users and
strategies for mitigating them in order to buffer users from
their effect have been proposed, see e.g. [1]. These strategies
consist of techniques that carefully vet new plans and only
deploy them after they have been proven better than the
previous, establishing monotonic performance behavior.

While such techniques address customers’ concern and are
highly valuable for the end-user, they do not help engineers
to direct their efforts to actually improve the product.

Therefore, we consider plan regressions independent of
their possible impact on customers but primarily on their

1Other optimization goals such as robustness, resource consump-
tion etc. are conceivable. For simplicity we use performance as
the optimization goal. Our methods apply to other objective
functions as well.

effect on the development process without which a product
cannot be improved.

In particular, we are interested in regressions pertaining to
the appropriate assessment of plans, i.e., whether the better
of two alternatives is chosen.

1.2 Common Test Practice
Quality assurance for optimizers has a long tradition in

database development and seen heightened interested re-
cently, see e.g., [7, 2, 3].

The problem of plan regressions has plagued database ven-
dors for a long time. Despite huge efforts and substantial
costs to most development organizations the issue has not
been addressed satisfactorily.

The standard test practice is as follows:

1. Define a plan regression test suite; chosen for their rel-
evance, often including benchmark queries, customer
workloads, etc.

2. Retrieve the bpf for each query in a form that can be
stored in the test database or in flat files;

3. Execute the test suite, retrieve bpf using the new con-
figuration and compare against the previously stored
one;

4. In case of discrepancy, identify the code-level change
that triggered the plan change, engage developer in
discussion to understand if the detected plan change
is beneficial or needs to be corrected;

5. If code change is accepted, update plan regression suite;

The crux of the problem are plan regressions that are
considered necessary or valid. The most prominent case
is the classic two-wrongs-make-a-right: Occasionally, bad
estimates cancel each other out. By correcting one of two
estimates the remaining inaccuracy may lead to a regression.
Yet, correcting the root cause of the bad first estimate might
be considered a general improvement to the overall optimizer
quality and should therefore be accepted despite causing a
regression. These decision have to be made on a case-by-case
basis.

There are several major problems with this practice. First,
only changes to the bpf are tested and potentially far-reach-
ing changes that do not affect the bpfs of the regression
suite go undetected. Increasing the number of tests in the
suite may increase the coverage. However, given the mas-
sive numbers of plan alternatives modern optimizers con-
sider for even modestly complex queries, increasing the test
suite in the hopes that bpfs are distributed suitable is a
loosing proposition. Secondly, the process as outlined above
requires significant manual intervention each time a plan
change is detected. Understanding the cause for the change
and determining if the change should be accepted as the
new reference plan is an involved process. As a result such
plan regression suites are naturally confined to small sizes
which is at odds with the previous requirement of collecting
as many data points as possible.

2. DESIDERATA
The following is a list of desiderata for a measure or mech-

anism to detect plan regressions of an optimizer early and
conclusive that we collected from numerous discussions with

practitioners and database implementers and researchers as
well as own research [5, 8, 4].

As mentioned above, we are primarily looking at plan re-
gressions from a developer’s point of view, with the intent to
improve the optimizer. That is, we are not only interested
in preventing regressions in the form of bad plan choices but
would also like to detect improvements the same way.

Simple. The measure should be a simple value. Multi-
dimensional measures—i.e., vectors of individual (of-
ten even unrelated) measures—are difficult to com-
pare.

Transparent. The measure should express a strong and
semantically clear assessment. Ideally, the measure
relates to a simple and tangible concept of goodness,
e.g., bad/good plan choices the optimizer has made
during a single test.

Agnostic. The measure should be agnostic of the partic-
ular optimizer technology used. Specifically it should
not attempt to reverse engineer components and there-
fore become overly dependent on the current imple-
mentation because future changes may significantly al-
ter or even remove these components.

Targeted. A query optimizer tries to generate the optimal
plan for a given target platform, i.e., a combination of
execution and storage components. Over the course of
several releases, the underlying execution engine may
change substantially. The measure must take into ac-
count that each version of the optimizer may optimize
for a different target platform.

Surgical. The measure should apply to individual queries.
This will enable implementers to troubleshoot specific
optimizer problems that are otherwise buried in larger
workloads or hidden by interactions of other compo-
nents.

Specific. The measure, or an extension of it, should enable
application-specific comparisons. That is, it should ap-
ply to any workload in addition to individual queries.
This will enable test engineers to assess plan regres-
sions for a given application scenario. Relying on a
single benchmark is generally considered insufficient.

Practical. The measure should be straight-forward to com-
pute and lend itself easily to automation.

The desiderata as listed above capture the most impor-
tant aspects of measuring an optimizer’s quality in general.
Consequently, we believe a mechanism that satisfies most or
all of these may be also an important building block for a
more general optimizer benchmark.

3. PLAN SPACES
A plan space SQ is the set of alternative plans that an

optimizer considers for an individual given query Q. Each
element of the plan space is a complete query plan that,
when executed, produces a valid answer to the given query.
The plan space is specific to the implementation of an op-
timizer in that it is not the set of plans over hypothetical
relational algebra but strictly the set of plans actually con-
sidered by the optimizer on hand.

A plan space is invariant with respect to possible changes
in data—just like a query is typically run over data that
changes as part of the normal production workflow. We refer
to entirety of parameters that describe the data as database
configuration D.

Two plans within a plan space are of particular interest:
the optimal plan, and the bpf, i.e., the plan the optimizer
considers the optimal plan. In practice, the bpf is the op-
timal plan only for trivial queries with few alternatives or
trivial database configuration with little room for estimation
errors.

The following observation will be critical for our method-
ology:

Observation. Given a plan space SQ for a query Q, for
any two plans p1, p2 ∈ SQ there exist two database config-
urations D1 and D2 such that p1 is optimal for D1 and p2

is optimal for D2. In general, p1 will not be optimal in D2

and p2 not optimal in D1. 2

In other words, for any plan of a given plan space, we can
carefully manufacture a database configuration for which
this plan will be optimal, i.e., it will not be outperformed
by any other plan in the plan space.

Example. For example, consider the case of a simple join
between ORDERS and CUSTOMERS of the TPC-H schema,
with a non-covering index on C CUSTKEY, the primary key
of Customers:

SELECT *
FROM CUSTOMERS, ORDERS
WHERE O CUSTKEY = C CUSTKEY
AND O ORDERDATE >= date ’2010-01-01’
O ORDERDATE < date ’2010-11-01’
ORDER BY O orderkey

Depending on the data and selectivities of the predicates
the optimal plan could contain an index lookup join into
CUSTOMERS, a index scan with a sort-merge or a hash join
following. For some database configurations the index will
not play a role at all since the fetching of the remaining rows
might be too costly. In addition, a number of additional
optimizations and plan variants may apply.

The optimizer we experimented with considers a total of
103 different plans for this rather trivial query. That means,
there are up to 103 database configurations that will lead to
103 different optimal plans. 2

It is important to note that the concept of a plan space
is independent of a cost model. Even a purely heuristic
rule-based optimizer that does not deploy any costing at all
operates over a plan space. Its decision may not be driven
by a cost model but it still is able to generate different plan
alternatives depending on the database configuration.

4. PLAN SPACE ANALYSIS
In this section we will develop a measurement that deter-

mines how well an optimizer models a query’s search space.

4.1 Motivation
Let us assume for the moment a perfect optimizer. A

perfect optimizer is one that is able to establish a partial
order on all plan alternatives according to their actual per-
formance. That is, for each pair (p1, p2) ∈ PQ this optimizer

0

5

10

15

20

25

0 2 4 6 8 10 12

(a) Monotonic correlation

0

5

10

15

20

25

0 2 4 6 8 10 12

(b) Non-monotonic correlation

Figure 1: Schematic scatter plots

is able to decide p1 ≤ p2 if p1 outperforms p2 and, conversely,
p2 < p1 if p2 outperforms p1. A perfect optimizer is there-
fore able to correlate estimated and actual execution cost
monotonically as indicated with the example in Figure 1a.
The X-axis represents estimated costs, the Y-axis actual ex-
ecution time. The correlation function does not need to be
linear. Actually, in practice, we often find alternative plans
have been differentiated by the optimizer correctly in terms
of which plan outperforms the other although the exact dif-
ference was over or under estimated compared to other dis-
tances between pairs of plans. Most notably, the bpf at (1,
3.6) corresponds to the optimal plan.

On the other hand, and in our experience much more real-
istic, is the case of a less-than-perfect optimizer as illustrated
in Figure 1b. The correlation between estimated and actual
is much weaker. And, importantly, the bpf at (1, 12) is more
expensive than 70% of the other plans, although no worse
than three times the optimal. This second plot indicates the
optimizer did a mediocre job at best.

Most optimizer test suites try to determine whether an op-
timizer is able to distinguish the bpf from any inferior plan,
in the hopes that this implies that the bpf is optimal. How-
ever, based on the observation in the previous section that
for every plan exists a database configuration for which this
plan is optimal we expect that a high quality optimizer be
able to order any two plans correctly, regardless of whether

one of them is the optimal plan or the bpf.
Intuitively, the better an order within the plan space an

optimizer is able to establish, the better this optimizer’s
overall quality. Hence, we will use the ability to order plans
correctly as a measure for the accuracy of the optimizer’s
cost model, in the following.

Using this insight, we express the correlation in a plan
space as a function of the number of incorrect orderings that
we detect. This measure will allow us to detect detrimental
plan changes, independent of whether or not the bpf is affect
by the change.

4.2 Definition
Formally, we define the correlation of a plan space as fol-

lows:

Given a query Q and a set of alternative plans p1, . . . , pn,
let Xi denote the rank of plan pi according to the optimizer
and Yi denote the rank of plan pi according to actual exe-
cution time. We define ρ as Spearman’s Rank Correlation
Coefficient of X and Y :

ρ(Q,n) = 1− 6

n(n2 − 1)

nX
i=1

(Xi − Yi)
2

For a workload W consisting of queries Q1, . . . , Qm we de-
fine ρ as

ρ(W,n) =
1

m

mX
i=1

ρ(Qi, n)

2

In statistics, a number of different measures for correla-
tion are used. We chose to use the Spearman’s Rank Corre-
lation based on its highly suitable properties. In particular,
it expresses the statistical dependence between two variables
by assessing how well the relationship between the two can
be approximated with a monotonic function. The Spear-
man Rank Correlation, and hence our measure ρ, produces
values between −1 and 1, with 1 denoting perfect correla-
tion between estimated and actual ranking. For a detailed
discussion of Spearman’s Rank Correlation Coefficient, see
e.g. [6].

We introduced n as a variable for practical purposes. We
maintain a constant n across a workload although queries
may vastly differ in size of their respective search spaces.

Example. In Figure 2, a sample of 11 plans—10 ran-
domly chosen plans plus the bpf—with their estimated and
actual execution costs is listed. For the purpose of this ex-
ample, the actual query parameter are irrelevant. Columns
X and Y show the ranking of the plans according to their
estimated and actual cost.

Figure 3 is a scatter plot of the ranks. It clearly shows
2 “mistakes” the optimizer made as outliers from an other-
wise perfectly correlated plot. The plans with actual ranks
3 and 11 were incorrectly ranked 5 and 8. The resulting
ρ(Q, 11) score is 0.918. One might argue that the first mis-
take is less severe than the latter and therefore should con-
tribute differently to the score. However, we decided to
stick with the simpler rank correlation independent of ad-
ditional data points. We will discuss possible extensions to
the method to address potential issues like this in the next
sections though. 2

plan estimated actual Y X

1 1.000 1.000 1 1
2 1.004 1.106 2 2
3 2.337 1.178 5 3
4 2.165 1.454 3 4
5 2.287 1.456 4 5
6 2.393 1.465 6 6
7 5.418 1.938 7 7
8 5.750 1.944 9 8
9 5.757 1.946 10 9

10 5.828 1.946 11 10
11 5.536 1.947 8 11

Figure 2: Normalized estimated and actual execution
costs of a sample of 10 plans for Q5 of TPC-H; ordered
by actual execution cost; (X = rank as per actual, Y
= rank as per estimate)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Figure 3: Scatter plot of actual vs. estimated ranks. 2
plans (rank 3, rank 11) out of order;

ρ meets the desiderata as given in Section 2: it condenses
the optimizer’s decisions into a simple yet transparent mea-
sure, is agnostic of the underlying technology and captures
that the optimizer produces a plan for a very specific target
platform.

4.3 Practical Considerations
While experimenting, we came across a few practical is-

sues worth noting, mainly regarding the choice of the un-
derlying sample of plan alternatives.

First, to the best of our knowledge only one commercial
optimizer type offers the ability to sample uniformly from
a plan space. However, neither uniformity nor full support
for sampling will be needed to determine ρ for a query or a
workload. Actually, many database administrators perform
the simplest of assessments of ρ on a daily basis whenever
they suspect a bpf is noticeably supoptimal: using special
controls such as hints or other tuning controls they force a
number of plan alternatives execute them and the compare
them to the bpf. In a way, they generate samples of plans
manually.

Second, including plans that are significantly more expen-
sive than the bpf in the plan space analysis poses additional
difficulties: these plans may take exceedingly long to execute

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

Figure 4: Correlation coefficients of TPC-H queries; higher values indicate higher correlation between estimated and actual
costs across the query’s entire plan space

and render test runs impossibly long. For practical reasons
we exclude plans that have been estimated at more than 10
times the cost of the bpf from the sample as detailed above.

Third, it is important for the accuracy of ρ to be able to
differentiate plans with similar execution cost conclusively.
This may be difficult if plans have almost identical execution
time. We have excluded plans whose execution is too close
to another member of the sample.

Lastly, we suggest using values of n of at least 10 or greater
to achieve stable repeatable results. Also, queries that have
less than 10 alternative plans should be excluded from the
rating/workload.

5. EXPERIMENTS
In order to validate the basic ideas behind plan space anal-

ysis we present some initial experiments.

5.1 Setup
We chose TPC-H as a test bed for the high degree of

readers’ familiarity. We use a 10GB database size although
the actual size is not relevant for our purposes.

For any given query we select n random plans using the
sampling mechanisms of [8]. We executed each plan at least
twice and took the average execution time.

We also included the bpf as a baseline. For practical
reasons, we focused only on plans that run within a small
multiple of the time of the optimal plan. This mechanism
is necessary as a random sample of plans may contain arbi-
trarily bad plans too.

5.2 Workload
In Figure 4, the correlation coefficient for all queries of

the TPC-H suite is shown. The plot shows overall very
good ρ scores for most queries—but identified also several
problem queries, which are currently under investigation by
the development team as a consequence of our experiments.

Given the TPC-H data set, it may seem surprising at first
that our optimizer did not achieve a perfect score. Counter
to common believe, most commercial optimizers are actually
biased against TPC-H—and that for good reasons: customer
data contains almost always correlations that go undetected.
Most optimizers try to anticipate this and do not treat mul-
tiple predicates fully independent, among other things. This
type of bias has proven valuable in a wide variety of appli-
cation scenarios. However, in the case of TPC-H, the data

is unnaturally independent and, hence, the bias is slightly
disadvantageous for this query set.

5.3 Plan Regressions
A common source of plan regressions, although by far not

the only one, are adjustments of the cost estimation algo-
rithms in an optimizer. Probably the most frequently en-
countered one is calibration or refinement of the cost model
by adjusting certain cost constants used by cost formulas.
This type of modification is particularly treacherous because
most changes may not affect the bpf of even larger test suites
of queries.

To investigate ρ’s sensitivity to plan regressions we arti-
ficially introduced cost model changes and repeatedly com-
puted the ρ score. We modified the cost function by increas-
ing the cost for hashing an individual datum. Changes to
this kind of constant are not unusual in commercial devel-
opment.

Cost of hash 100% 150% 300% 1000%
ρ 0.919 0.847 0.831 0.557

Table 1: ρ for Q5 as function of degree of regression intro-
duced in optimizer’s cost model; 100% denotes default plan

In Table 1 we show ρ as a function of the degree of regres-
sion introduced for Query Q5. Starting with the standard
configuration, i.e., 100% of the cost factor, we increased the
cost factor. The correlation coefficient not only reflects the
overall trend but helps even quantifying the extent of the
regression. Only for the last setting, which leads to signifi-
cant aberrations in the plan space did the bpf change, i.e.,
conventional tests would have identified only the last setting
as regression.

5.4 Tuning
Our final experiment looks at using ρ to fine-tune indi-

vidual costing elements. We chose to experiment with two
parameters that affect the costing of index seeks: CPU and
I/O cost per seek. In Figure 5, ρ scores for combinations
of slightly altered cost values are shown. We found that
decreasing CPU cost by 10% raises ρ slightly, and decreas-
ing both CPU and I/O cost by 10% to be balanced has
significant beneficial value (second and third bar in graph).
However, unbalancing these values dramatically by 50% is

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

BPF 10% CPU 10% CPU/IO 50% CPU 50% CPU/IO

Figure 5: ρ score for modified index seek costs

detrimental and may lead to regressions. Again, in neither
case was the bpf affected, i.e., conventional testing could
not identify the impact of these modifications.

These are only initial experiments that are meant to un-
derline the potential of our methodology but are no compre-
hensive framework for tuning an optimizer yet. However, we
are planning a test harness that combines ρ with automated
parameter modifications in the future.

6. DISCUSSION
The initial experiments we presented are a starting point

for a variety of additional application areas and research
directions. We believe plan space analysis has practical rel-
evance for everybody involved in using, maintaining, or de-
veloping query optimization technology. In particular, it can
be used by the following groups:

Quality Assurance. QA has been the primary target au-
dience that inspired our work. Testing optimizers poses
significant challenges [4]. With a ρ score, regression
tests can be easily automated: any randomly gener-
ated workload can be turned into a fully functional test
suite. Problematic queries can be pin-pointed by their
low(er) score. As a result the overall rating of a repre-
sentative workload can be used to track the quality of
the optimizer on a day-by-day basis. Regressions but
also improvements are discovered quickly and, most
importantly, early on in the development process.

Optimizer Implementers. For every software change to
the optimizer there exists an infinite set of queries and
database configurations for which the search space has
been perturbed, i.e., the relative ordering of plans for
these queries has been altered. If the choice of the
optimal plan of any of these queries has been nega-
tively affected the change is said to have caused a plan
regression. The fear of plan regressions is commonly
viewed as the biggest obstacle to innovation in opti-
mizer technology. Using a ρ score implementers can
make changes more confidently: if the score has de-
graded the change must have caused one or more plan
regressions; if the score has improved the change fixed
existing plan regressions, even if the change was not
developed as fix for this particular plan regression.

Operations. When upgrading to a new product release
plan regressions pose a significant risk that is hard to
assess; using the ρ score of the previous and the new

release on the customer’s own workload allows staff to
upgrade with confidence.

DBA’s/Data Architects. During the implementation of
data warehouses or other application scenarios, data
architects or DBA’s can test the robustness of individ-
ual queries, i.e., assess how well the optimizer can deal
with a given query and hence assess the risk for follow
up support costs.

7. SUMMARY
Accurately assessing the quality and robustness of a query

optimizer is of immense practical relevance and has imme-
diate application in both industry and academic research.

In particular, in this paper we focused on the problem of
assessing the impact of changes to the optimizer logic with
much finer sensitivity than conventional tests have been able
to.

We developed a methodology for a comprehensive plan
space analysis. We measure how well a given optimizer
models a query’s plan space. It is a simple and intuitive
measure that assesses the optimizer’s ability to rank plan
alternatives correctly. Its simplicity, portability, and accu-
racy make it a universal tool for practitioners in every phase
of the development of a query optimizer.

We presented preliminary results of experiments that un-
derline the usefulness of plan space analysis in general and
its sensitivity to regressions in the optimizer in particular.

Acknowledgements
We would like to thank the participants of the Dagstuhl
workshop on Robust Query Processing for numerous discus-
sions and their encouragement to write this paper.

8. REFERENCES
[1] R. Ahmed. Query Processing in Oracle DBMS. In Proc.

Int’l. Workshop on Data Warehousing and OLAP,
2010.

[2] M. Elhemali and L. Giakoumakis. Unit Testing Query
Transformation Rules. In Proc. Int’l. Workshop on
Database Testing (DBTest), 2008.

[3] H. G. Elmongui, V. Narasayya, and R. Ramamurthy. A
Framework for Testing Query Transformation Rules. In
Proc. Int’l. Conf. ACM SIGMOD, 2009.

[4] L. Giakoumakis and C. Galindo-Legaria. Testing SQL
Servers Query Optimizer: Challenges, Techniques and
Experiences. IEEE Data Engineering Bulletin, 31(1),
2008.

[5] G. Graefe, A.-C. König, H. Kuno, V. Markl, and K.-U.
Sattler. Robust Query Processing. Technical Report
Workshop 10381, Dagstuhl, 2010.

[6] J. S. Maritz. Distribution-Free Statistical Methods.
Chapman & Hall, 1981.

[7] N. Reddy and J. Haritsa. Analyzing Plan Diagrams of
Database Query Optimizers. In Proc. Int’l. Conf. on
Very Large Databases, 2005.

[8] F. Waas and C. A. Galindo-Legaria. Counting,
Enumerating, and Sampling of Execution Plans in a
Cost-Based Query Optimizer. In Proc. Int’l. Conf.
ACM SIGMOD, 2000.

